일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 장고
- paper review
- 텐서플로우
- pytorch
- 파이토치
- FLASK
- 그래픽 유저 인터페이스
- POD
- Docker
- 웹 프로그래밍
- numpy
- Deep Learning
- Tkinter
- 딥러닝
- 논문 리뷰
- MariaDB
- yaml
- OpenCV
- vue.js
- Computer Vision
- Django
- 파이썬
- GUI
- 데이터베이스
- k8s
- Python
- Web Programming
- tensorflow
- kubernetes
- 컴퓨터 비전
- Today
- Total
목록넘파이 (2)
Maxima's Lab
안녕하세요, 오늘은 Numpy (넘파이)의 expand_dims, append, stack 함수에 대해서 알아보겠습니다. ▶ expand_dims() : Array (배열)의 shape (형태)를 확장시키는 함수 random.randint() 함수를 이용하여 size = (100, 64, 64) 이고 0 이상 256 미만의 임의의 값을 원소로 갖는 배열을 생성하여, 해당 배열에 expand_dims() 함수를 적용해보겠습니다. import numpy as np array_a = np.random.randint(0, 256, (100, 64, 64)) print(array_a.shape) array_a_axis_0 = np.expand_dims(array_a, axis=0) print(array_a_axi..
안녕하세요, 오늘은 Numpy (넘파이)의 "ndarray" 에 대하여 알아보겠습니다. 여기 ndarray는 N-dimensional array (즉, N차원 배열)를 의미합니다. 먼저, 다음과 같이 예시를 들어보겠습니다. ▶ 1차원 배열 및 다차원 배열의 예시 1차원 배열의 예시 import numpy as np array_a = np.array([1, 2, 3]) print(type(array_a)) print(array_a.ndim) Output : 1 위의 결과와 같이 type() 함수를 통해 numpy.ndarray 라는 것을 확인하였고, .ndim을 통해 배열 차원의 수를 확인하였습니다. 조금 더 차원의 수가 많은 경우는 다음과 같습니다. 다차원 배열의 예시 import numpy as np ..